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Density probability distribution in one-dimensional polytropic gas dynamics
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We discuss the generation and statistics of the density fluctuations in highly compressible polytropic turbu-
lence, based on a simple model and one-dimensional numerical simulations. Observing that density structures
tend to form in a hierarchical manner, we assume that density fluctuations follow a random multiplicative
process. When the polytropic exponentg is equal to unity, the local Mach number is independent of the
density, and our assumption leads us to expect that the probability density function~PDF! of the density field
is a log-normal. This isothermal case is found to be special, with a dispersionss

2 scaling as the square turbulent

Mach numberM̃2, wheres[ ln r andr is the fluid density. Density fluctuations are stronger than expected on
the sole basis of shock jumps. Extrapolating the model to the casegÞ1, we find that as the Mach number
becomes large, the density PDF is expected to asymptotically approach a power-law regime at high densities
wheng,1, and at low densities wheng.1. This effect can be traced back to the fact that the pressure term
in the momentum equation varies exponentially withs, thus opposing the growth of fluctuations on one side of
the PDF, while being negligible on the other side. This also causes the dispersionss

2 to grow more slowly than

M̃2 whengÞ1. In view of these results, we suggest that Burgers flow is a singular case not approached by the

high-M̃ limit, with a PDF that develops power laws on both sides.@S1063-651X~98!16909-X#

PACS number~s!: 47.27.Ak, 47.40.Ki, 95.30.Lz
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I. INTRODUCTION

The formation of density structures by the velocity fie
of highly compressible turbulence is of great interest in
trophysics. The determination of their typical amplitude, s
and volume filling factor poses significant difficulties since
requires a knowledge of the full statistics. In this paper
shall concentrate on one-point statistics and more specific
on the probability density function~PDF! of the density fluc-
tuations in one-dimensional~1D! turbulent flows.

It is well known that the density jump in a shock depen
directly on the cooling ability of the fluid. Thus, for an adi
batic flow the maximum density jump is 4, for an isotherm

flow it is ;Ma
2 @1#, and for nearly isobaric flows it is;eMa

2

@2#, whereMa is the Mach number ahead of the shock. T
net cooling ability of a flow can be conveniently param
etrized by the polytropic exponentg, so that the therma
pressureP is given byP5Krg, wherer is the fluid density
@3#. Isothermal flows haveg51, and isobaric flows haveg
50. Note thatg,0 corresponds to the isobaric mode of t
thermal instability~see, e.g.,@4#!. Thus, in general, the am
plitude of the turbulent density fluctuations will be a functio
of g.

Previous work with isothermal flows had suggested t
the PDF is log-normal@5,6#, while for Burgers flows a
power-law PDF has been reported@7#. More recently, evi-
dence that flows with effective polytropic indices 0,g,1
also develop power-law tails at high densities has been
sented@8#. In order to resolve this discrepancy, we presen
series of 1D numerical simulations of polytropic gas turb
lence with random forcing, in which the polytropic expone
g parametrizes the compressibility of the flow. We have c
PRE 581063-651X/98/58~4!/4501~10!/$15.00
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sen to use 1D simulations in order to perform a large num
of experiments at a sufficiently high resolution, integrat
over very long time intervals, allowing us to collect larg
statistical samples.

The simulations have three governing parameters:
polytropic indexg, the Mach numberM , and the Reynolds
numberR. We keep the Reynolds number fixed and explo
the effects of varyingg andM on the resulting density PDF
Variation of g induces a clear qualitative variation of th
density PDF, which at large Mach number displays a pow
law tail at high densities for 0,g,1, becomes log-norma
for g51, and develops a power-law tail at low densities f
g.1. This suggests a symmetry about the caseg51 that we
also explore. Variation of the Mach number, on the oth
hand, only appears to induce a quantitative change, the w
of the PDF increasing withM .

The plan of the paper is as follows. In Sec. II we descr
the equations solved and the numerical method. In Sec
we describe the statistics of the various fields, in terms
their PDFs, together with a tentative model and a discuss
of the Burgers case. Section IV is devoted to a discussion
the choice of the forcing, together with a summary of o
results.

II. EQUATIONS AND NUMERICAL METHOD

We choose to concentrate on one-dimensional for
polytropic gas dynamics, governed by the following non
mensionalized equations:

] tu1u]xu52
1

gM2

]xr
g

r
1

1

R
]xxu1a, ~1!
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] tr1]x~ru!50, ~2!

where u is the velocity of the fluid in units ofU, r the
density in units ofr0 , g the polytropic index, andM the
Mach number of the unit velocityU at the unit densityr0 .
The equations are driven by an accelerationa with zero
mean. The Reynolds number isR5UL/n, whereL is the
size of the domain andn the kinematic viscosity chose
constant to ensure the conservation of the mean velo
^u&51/L*u dx. The viscous term is kept as small as po
sible and is only included to prevent numerical blowup. No
that the ‘‘correct’’ form of the viscous term is obtained aft
replacingn with the ratiom/r, where the dynamical viscos
ity m is usually considered independent of the density. T
equations then conserve the momentum*ru dx if the accel-
erationa in Eq. ~1! is also replaced by the ratio of a forcef
to the densityr. The dynamics that results in this case
very different due to the dependence of the driving term w
respect to the density, as discussed in the last section.

For large Mach number simulations, it was found nec
sary to smooth density gradients using a mass diffusion t
of the form m r]xxr in the right-hand side of Eq.~2!. Total
mass is still conserved in the presence of this term, and im r
is taken sufficiently small, it has been tested that mass di
sion does not affect the dynamics in a way that could mod
our conclusions.

It was also convenient to solve Eqs.~1! and~2! using the
variables[ ln r. The numerical code uses a standard ps
dospectral method with periodic boundary conditions. Ti
advance is performed using a Crank-Nicholson scheme
the linear terms and an Adams-Bashforth scheme for
nonlinear ones. For all the runs presented in this paper,
kinematic viscosity has been fixed atn5331023. For runs
with M>3, we havem r5531024.

The accelerationa is prescribed in Fourier space. Its spe
trum has a constant amplitude~equal to 0.6! on wave num-
bers 1<k<19 and phases chosen randomly with a corre
tion time t cor50.003. Resolution ranges fromN53072 to
N56144 grid points for the runs withM>6.

We perform one-point statistics of the simulations, f
both the density and the velocity derivatives, keeping
forcing and the viscosity constant. All simulations start w
zero initial velocity and constant density.

In order to obtain reasonably sampled histograms of
one-dimensional fields, which contain onlyN spatial data
points, we sum the histograms over time, sampling at in
vals of 0.1 time units, integrating over a total of 150 tim
units. However, we have found that, since the simulatio
start with uniform density, the first several samples must
discarded, since they bias the density histogram nearr51.
We typically skip the first 20 temporal samples~two time
units!. The PDFs thus computed contain roughly four millio
data points. Note that longer integration times are neede
a larger Mach number in order to reach a statistically r
evant sample, the sound crossing time of the integration
main being larger asM increases.

III. A MODEL FOR THE DENSITY PDF

A. Properties of the governing equations

Before describing our model for the density PDF, it
instructive to rewrite the governing equations in the invisc
ty
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unforced case, using the variablev5(12g) ln r when g
Þ1 ands5 ln r wheng51. ForgÞ1, we get

Du

Dt
5

1

~12g!M2

]

]x
e2v, ~3!

Dv
Dt

52~12g!
]

]x
u, ~4!

and forg51,

Du

Dt
52

1

M2

]

]x
s, ~5!

Ds

Dt
52

]

]x
u, ~6!

whereD/Dt stands for the convective derivative. The va
able v is, up to an additive constant, the logarithm of t
square of the sound speed, and wheng51, it becomes iden-
tically zero.

These equations can be rewritten in Riemann invari
form. ForgÞ1, they read

@] t1~u6c!]x#S u6
2c

~g21! D50, ~7!

wherec5r (g21)/2/M is the sound speed, while in the sing
lar caseg51 these equations become

F] t1S u6
1

M D ]xG S u6
ln r

M D50. ~8!

A number of interesting remarks can be made regard
the preceding equations.

~i! When g51, Eqs.~5! and ~6! are invariant upon the
changes→s1b, whereb is an arbitrary constant. Indeed
the sound speed does not depend on the local density o
fluid in this case.

~ii ! In the general case, if we replaceg with 22g andr
with 1/r, we observe that the Riemann invariantsz65u
6@2c/(g21)# are exchanged, while their speedsu6c re-
main unchanged. We shall now explore the implications
this remark on the statistics of the density fluctuations in
weakly compressible regime. For small values of the Ma
number, a reductive perturbation expansion can be p
formed on the viscous equations and it has been shown@9#
~see also@10#! that one-dimensional compressible turbulen
reduces essentially to the superposition of the solutions
two Burgers equations describing nonlinear wave propa
tion in opposite directions. More precisely@considering
Eqs. ~1! and ~2!, with M51 and a50], if we denote the
perturbations of the basic state (r51, u50) by r8 andu8,
Tokunaga obtained@9#

r85
2e

g11
@F1~j1 ,t!2F2~j2 ,t!#, ~9!

u85
2e

g11
@F1~j1 ,t!1F2~j2 ,t!#, ~10!
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wheree is the order of magnitude of the nonlinear wave
The new coordinatesj i andt are defined by

j i5e@x2r i t2f i~x,t !#, ~11!

t5e2t, ~12!

wherer 151 andr 2521 and the phase functions obey

f15
1

2

32g

11gE
j2

F2~j,t!dj1u1 , ~13!

f252
1

2

32g

11gE
j1

F1~j,t!dj1u2 , ~14!

with u i arbitrary constants determined by the initial con
tions. Finally, the functionsFi ~simply related to the Rie-
mann invariantsz6) satisfy the Burgers equations

]tFi1Fi]j i
F i5

n

2
]j ij i

F i . ~15!

The fields Fi evolve almost independently with the sam
dynamical equation, except for phase shifts, which are hig
order effects that are most important during shock wave
lisions. Given initial conditions forr8 andu8, the substitu-
tions r→1/r ~or r8→2r8) and g→22g lead to the re-
placement ofF1 and F2 by F2(32g)/(11g) and F1(3
2g)/(11g), respectively. For a vanishingly small viscosi
n, the rescaling of the amplitudesF1 andF2 can be absorbed
in a rescaling of the variablesj i . Except for this stretching
of space and time variables, the dynamics obtained after
substitution leads to the same fluctuations occurring at
ferent locations. As a consequence, we can expect tha
probability density functions of the casesg and 22g for
small values ofM will be closely related after the chang
r→1/r. The case of higher Mach numbers is more delic
due to the additional problem of mass conservation, ren
ing a symmetry betweenr and 1/r impossible. This question
is addressed below.

~iii ! The substitutiong→22g can also be examined a
the level of Eqs.~3! and~4!. Its effect is simply to change th
sign of the right-hand sides. Forg,1, Eq. ~4! shows that
positive values ofv ~in this case associated with densi
peaks! are mostly created by shocks~associated with nega
tive velocity gradients!. Looking at Eq.~3!, we see that asv
increases, the pressure term becomes exponentially s
and thus cannot prevent the formation of very strong pea
Negative values ofv ~associated here with density voids! are
created by expansion waves, but in that case the pres
increases exponentially with decreasing values ofv leading
to a rapid saturation of this process. As a consequence
expect that forg,1 the PDF ofv will be significantly more
populated at positive rather than at negative values. Fog
larger than unity the PDF ofv will be similar, the formation
of positive values ofv ~now associated with density voids!
being still unhindered by the pressure. It follows that t
PDF of s5 ln r for g.1 will appear similar to that forg
,1 after we changes→2s.

~iv! When g51, the behavior is very different since th
acceleration due to the pressure term is simply proportio
.
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to 2]xs, and thus never becomes negligible. We expec
symmetry in the PDF ofs, positive and negative values ofs
being equally created, by shocks and expansion waves
spectively.

~v! It is also useful to discuss the shock jump relations
the polytropic equations. Denoting byX the ratio of the post-
shock to the pre-shock density, we have~see@2#!

X11g2~11gm2!X1gm250, ~16!

where m is the upstream Mach number in the referen
frame of the shock. This equation shows that forg51, X
5m2, and that the jumpX increases more slowly thanm2 for
g.1, while it increases faster thanm2 for g,1 with, asg

→0, X;em2
. For weak shocks, we getX'11(m2

21)@2/(11g)#. In this case, with the shock velocity clos
to the sound speed, we can writem511(u/2c), whereu is
the velocity in the simulation frame, leading toX51
1Dr/r511(u/c)@2/(11g)#. We thus getDr/r;ms2/(1
1g), with ms5u/c denoting the Mach number in the simu
lation frame.

~vi! Additional insights into the level of density fluctua
tions can be obtained by studying the balance between
various terms in the equations. For almost incompress
turbulence, the balance between the pressure gradient an
nonlinear term in the momentum equation ensures that t
cal pressure fluctuations scale likeM̃2, where the turbulent
Mach number is defined asM̃5u rms/c ~hereurms is mostly
made of solenoidal motions, unlike in our 1D simulatio
where it stands for purely compressible modes!. If entropy
fluctuations are not allowed~as with a polytropic state law!,
the resulting density fluctuations also have to scale asM̃2. In
thermally forced turbulence, however, a Boussinesq-like b
ance occurs between temperature and density fluctuati
maintaining pressure fluctuations of orderM̃2, while allow-
ing for much larger values of density and temperature fl
tuations@11#.

In weakly nonlinear acoustics, the pressure term is b
anced by the velocity time derivative and we recover
scalingdr/r;M̃ obtained for weak individual shocks.

B. The caseg51

The main idea of our model is that density fluctuations
built up by a hierarchical process@5#. After a shock~or,
respectively, an expansion wave! passes through a given re
gion of mean densityr0 , the density reaches a new valu
r1 , larger~or, respectively, smaller! thanr0 . In this region
new fluctuations can be created, changing the local valuer1
to r2 , and so on. Of course the dynamical equations c
strain this process. For example, due to mass conserva
arbitrarily high values of the density can only be reached
very localized and thin peaks. We thus expect this hierarc
cal process to saturate at some values1.0. A similar satu-
ration should occur for low densities at some values2,0,
with probablyus2u.us1u, since larger voids can be create
without violating the mass conservation constraint. In t
case of the voids, the filling factor is bounded indirectly b
cause, in order to create voids, it is necessary to have pe
whose filling factor is limited by mass conservation.
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The buildup of these density fluctuations is a random m
tiplicative process which, at the level of the variables, is
additive. Since forg51 the equations are invariant under t
changes→s1s0 , the random variables is the sum of iden-
tical random variables, with the individual density jumps
having the same average magnitude, related to the M
number of the flow, but independent of the local density. T
sum of identical random processes is known to have
Gaussian distribution, due to the central limit theorem,
matter what the distribution of the individual processes
The PDF ofs is thus expected to follow a normal distribu
tion.

The variance of the random variables can be estimated
from the strength of the typical shocks and expansion wa
The case of shock waves has been discussed above. At
values of M , r i 11 /r i;11M̃ , so that ds5 ln (ri11 /ri)
5ln (11dr/r)'ln (11M̃);M̃. At high Mach numbers, indi-
vidual jumps obeyDs; ln M̃2. For expansion waves, th
balance of the time derivative ofs and of the positive veloc-
ity gradient in Eq.~6! givess;M , regardless of the value o
M . Indeed,usx is smaller thanst because between shocksr
has a plateau, in whichsx is nearly zero, whilest is of order
unity ~note that the decrease ofr is exponential in time!. The
density thus decreases in the center of expansion w
while it increases on the edges, until pressure blocks
process. In the caseg51, the effect of pressure is symmetr
in s so that positive and negative fluctuations are of the sa
order of magnitude, which itself is much larger than tho
due to shocks. We thus expectss;M̃ for a large range of
values of the Mach number.

From the previous discussion we can expect the PDF
the variables to be given by

P~s!ds5
1

A2pss
2

expS 2
~s2so!2

2ss
2 D ds, ~17!

with ss
25bM̃2, and b as a proportionality constant. Th

maximum of this distributionso is simply related toss due
to the mass conservation constraint. Writinĝr&
5*2`

1`esP(s)ds51 we findso52 1
2 ss

2 @see Eq.~23! below#.
Note that the PDF ofr is related to that ofs by Pr(r)
5P(ln r)/r.

The predictions of this model can be tested against res
of numerical simulations. Figure 1~top panel! shows a plot
of log10(ss) vs log10(M̃ ) obtained by combining data from
several simulations withM50.5, 1, 2, 3, 4.5, 6, and 10
These data were obtained by computingM̃ and ss for the
accumulated density and velocity fields over groups of 1
consecutive outputs of the simulations~spanning a duration
of 10 time units each! for each point in Fig. 1. This plo
shows thatss

2'bM̃2, with b'1, with a very good accuracy
up to the highest Mach numbers reached in our simulatio
On the other hand, we see in the bottom panel of the s
figure, which displays log10sr vs log10M̃ , that the density
standard deviation also scales likeM̃ for small values ofM̃ ,
while for M̃*0.5 the points curve up, a reflection of th

relation sr
25ess

2
21 between the two variances whenr
l-
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obeys a log-normal distribution. The relationso52 1
2 ss

2 is
also well verified numerically as can be seen from Fig. 2

We now display in Fig. 3 the logarithm of thes histo-
grams for three runs withg51 andM50.5, 2, and 6. Fits
with parabolas are shown in dashed lines and show that,
very good approximation, the density PDFs are log-norm
in all three cases. An estimation of the widths and maxima

FIG. 1. ~Top! Variance ofs5 ln r vs the mean square Mac

number M rms
2 5M̃2 for various simulations withg51 and M

50.5, 1, 2, 3, 4.5, and 6. Every point in this plot gives the varian

andM̃ over sets of 100 consecutive outputs~10 time units! of any
given simulation. The simulations were typically run for 150 tim

units. ~Bottom! Variance ofr vs M̃ .

FIG. 2. Most probable value ofs vs the variance ofs, ss
2 , for

the runs in Fig. 1. The data points are obtained as in Fig. 1.
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these distributions also shows a very good agreement
the predictionsss'M andso520.5ss

2 .
The distribution of the velocity derivativeux is shown in

Fig. 4 for g51 andM56. This distribution is found to be
almost independent of the Mach number. It presents a l
exponential tail for negative values ofux and a strong
dropoff for large values, analogous to the one found in
Burgers case@7#.

C. The casegÞ1

The difference between the caseg51 and the caseg
Þ1 lies in the behavior of the pressure term as a function
the local density of the fluid, an effect that is most visib
after comparing Eq.~3! with Eq. ~5!. With the density-
dependent rescalingM→M (s;g)5Me[(12g)/2]s, the two
equations are identical, which only means that wh
M (sc ;g) is substituted forM in Eq. ~3!, the small fluctua-
tions arounds5sc are identical to those of the caseg51.

The argument at the origin of the PDF ofs in the isother-
mal case is based on the fact that the local Mach numbe
the flow is independent of the local density. WhengÞ1 this
property is violated and there is no reason to expect a
normal PDF for the density. We nevertheless propose a h
ristic model, reproducing most of the features of the PD
obtained in our simulations, which consists of taking t
functional form of the PDF of the isothermal case and
placing M̃ by M̂ (s;g), where M̂ (s;g) now stands for the
‘‘effective’’ rms Mach number at the values. This ‘‘effec-
tive’’ rms Mach number is defined as

FIG. 3. Probability density function~PDF! of s for three simu-
lations with g51 and M50.5, 2, and 6. For clarity, these PDF
have been respectively displaced in the plot by22, 21, and 0 units
on the vertical axis. The shift of the peak towards more negativs
values at largerM is real, due to the constraint of mass conser
tion. The dashed lines show the best fit with a log-normal to e
PDF.
th

g

e

f

n

of

g-
u-
s

-

M̂ ~s;g!

5H M̂ ~s1 ;g! s.s1

Murms/c~s!5Murmsexp@~12g!s/2# s1>s>s2

M̂ ~s2 ;g! s2.s.

~18!

The cutoffss1 ands2 , which, as we shall see, are necessa
for convergence, are also physically meaningful, since
probability of new fluctuations arising within previous pea
or voids decreases as the amplitudes of the latter bec
larger because the fraction of space they occupy decrea
The fact that the cutoff occurs at larger values ofusu for s
,0 than fors.0 is due to the larger filling factors of low
density regions@see Figs. 5~a! and 5~b! for comparison#. A
numerical check of this saturation property is possible if o
computes the scatter plot of the standard deviation fors vs
the mean value ofs in subregions of the integration doma
for each snapshot. Figure 6 shows these plots forM56, g
50.5, andg51.5 in subregions of lengthN/3. Note that,
similar to theg51 case,ss is related toM̃ , because the two
are roughly proportional at lowM̃ , although they deviate
from proportionality at larger rms Mach numbers~see be-
low!. Thus, Fig. 6 can also be interpreted as giving the va
tion of the local Mach number with the local mean densi
showing that a clear trend exists. Moreover, we see that
saturation level fors,0 at g51.5 occurs at a much highe
value of the Mach number than fors.0, g50.5. Plots ofss

and sr vs M̃ for g50.5 andg51.5 are also presented i
Figs. 7 and 8. They show thatss increases more slowly tha
linearly with M̃ for high Mach numbers. This results from
the asymmetry in the fluctuations ofs for gÞ1. While for
g51 the typical excursions ofs are of the order ofM̃ both

-
h

FIG. 4. PDF of the velocity derivative for a run withg51 and
M56.
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for positive and negative values ofs; when g.1, for ex-
ample, pressure blocks the negative fluctuations ofs while
still allowing for fluctuations of orderM̃ on the positive side.
The resulting variancess is thus expected to be smaller tha

FIG. 5. ~a! Density field of a run withg50.5 andM510 at time
t534.65. Note the very thin density peaks and the shallow den
minima. ~b! Density field of a run withg51.5 andM56 at t
550.5. Note that the density maxima are now much shorter, w
the density minima~voids! become much deeper. They are al
much wider than the peaks in theg50.5 case because of mas
conservation.

FIG. 6. Standard deviation ofs vs the mean value ofs over
subregions of size 1/3 of the integration domain for two runs w
~top! g50.5 and~bottom! g51.5. Note the inverse trends betwee
the two runs and the saturation ofss at large values ofu^s&u, espe-
cially noticeable in the caseg51.5. Note also thatss is related to
the rms Mach number, as shown in Figs. 7 and 8.
M̃ . The same argument applies forg.1 but then fluctua-
tions are of smaller magnitude whens.0. Looking at the
plot of sr we see opposite trends forg.1 andg,1. First,
note that we do not expect the specific relation mention
above between the variances ofs andr, since the distribu-
tion of s is not Gaussian. Second, this trend is easily int
preted if we recall that forg,1 the density fluctuations ar
in high peaks, while forg.1 they consist of large voids. In
the former case the variance ofr can increase greatly whe
M is large, while in the latter case the voids do not contrib
much to the variance, leading to a slower increase ofsr with
M̃ .

The PDF will thus read

P~s;g!ds5C~g!expF2
s2

2M̂2~s;g!
2a~g!sGds, ~19!

where C(g) is a normalizing constant such tha
*2`

1`P(s;g)ds51. The parametera(g) is again determined
by the constraint of mass conservation stating that the m
value of the density should be 1:*2`

1`esP(s;g)ds51. For
s2,s,s1 , Eq. ~19! can be written more explicitly as

P~s;g!ds5C~g!expF2
s2e~g21!s

2M2
2a~g!sGds. ~20!

Note that in the absence of cutoffs, the convergence of
integrals requiresa.1 for g,1 anda,0 for g.1. This
functional form of the PDF immediately allows us to make
few predictions. Forg,1, M̂ (s;g) grows exponentially
with s for s2,s,s1 and, as a consequence, the PDF

ty

le

FIG. 7. Variance ofs ~top! and of r ~bottom! vs the mean
square Mach number for six runs withg50.5 andM50.5, 2, 3,
4.5, 6, and 10. Note thatss

2 increases more slowly thanM rms
2 be-

cause only one side (s.0) of the density PDF is unimpeded by th
pressure. Instead,sr

2 increases more rapidly thanM rms
2 because such

fluctuations ins imply very large fluctuations inr.
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0,s,M̂ (s;g) is dominated by the power-law~in r) behav-
ior P(s;g);e2a(g)s, while the Gaussian-like decay dom
nates again fors.M̂ (s;g). For s,0, the local turbulent
Mach number decreases withs and we expect a more rapi
dropoff of the PDF than for the caseg51 in the sames
range. The behavior is exactly opposite wheng.1. These
predictions can be verified by looking at Fig. 9, which d
plays the PDF ofs for g50.3 andg51.7 atM53. The PDF
for g51.7 andM53 displays a bump fors'22 due to a
large, long-lasting void. In order to test whether this feat
is due to a rare event, we continued the run for another
time units and performed the PDF both for the second par
the run only and for the combined 300 time units. The P
of the second part presents a nice power law without bu
~not shown!, while the PDF of the full run presents a milde
bump, indicating that very long runs are indeed needed
order to obtain smooth PDF wings.

It is now interesting to relate the PDF for a certain val
of g to that obtained for 22g. Writing the condition^r&
51, we get

E
2`

`

expS 2
s2

2M̂2~s;g!
1@12a~g!#sD ds

5E
2`

`

expS 2
s2

2M̂2~s;g!
2a~g!sD ds, ~21!

while the same condition for 22g reads, after making the
substitutions→2s in the integrals,

FIG. 8. Variance ofs ~top! and of r ~bottom! vs the mean
square Mach number for six runs withg51.5 andM50.5, 2, 3,
4.5, and 6. Again~compare to Fig. 7!, ss

2 increases more slowly
thanM rms

2 because only one sides,0 of the PDF is unimpeded by
the pressure. However, in this casesr

2 also increases more slowl
than M rms

2 , because the density fluctuations are bounded by z
and are not able to contribute much to the variance ofr.
e
0

of
F
p

in

E
2`

`

expS 2
s2

2M̂2~2s;22g!
2@12a~22g!#sD ds

5E
2`

`

expS 2
s2

2M̂2~2s;22g!
1a~22g!sD ds.

~22!

For s2,s,s1 , the functions M̂ (s;g) and M̂ (2s;2
2g) are identical. If the cutoffss1 and s2 occur at large
enough values, i.e., when the local Mach number is eit
very large or very small~cf., Fig. 6!, the contributions to the
integrals of the two terms involving these two quantities w
be very close and, by inspection of Eqs.~21! and~22!, we get

a~22g!512a~g!. ~23!

This relation is exact wheng51 sinceM̂ (s;1)5M̃ is inde-
pendent ofs, allowing us to recover the resulta(1)5 1

2 .
Note also that for large enoughM , a case where Eq.~23!
holds, the symmetrys→2s is not possible but must includ
a translation in thes domain to account for mass conserv
tion.

Relation ~23! is verified numerically with a reasonabl
precision for the runs at the highest Mach numbers. For
ample, whenM56, the slope of the power law is21.2 ~i.e.,
a51.2) for g50.5, while we havea520.28 for g51.5
~see Fig. 10!. For smaller values ofM , the absolute values o
the slopes are closer to each other, a feature due to the
ferent cutoffs for negative and positive values ofs ~see Fig.
9 for M53 andg50.3 and 0.7). Note that the shape of th
PDF forM56, g51.5 exhibits a steeper slope for values
s slightly smaller than that of the maximum. This feature c
also be reproduced with this simple model, as can be see
Fig. 11, which displays the PDF obtained from Eq.~19! for

o,

FIG. 9. PDFs ofs for two simulations withM53 andg50.3
~top! and g51.7 ~bottom!. For g50.3 the power-law regime ap
pears at large densities, while forg51.7 it appears at small dens
ties.
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a50.28, g51.5, M̃ (0)51.2, and values of the cutoffs a
M̃510 for s,0 andM̃50.1 for s.0.

D. The caseg50, i.e., the Burgers equation

An interesting problem concerns the high Mach num
limit. It is often suggested that whenM is very large, the
dynamics of compressible flows should be analogous to
prescribed by the Burgers equation. While this may be t
for the velocity field, our results prove that it cannot be t
case for the density. Indeed, we find that whatever the va
of gÞ0 and of the Mach number, there is always a range
densities for which the pressure cannot be neglected. For
range of densities the PDF has no power-law tail but pres
a more rapid dropoff. Forg51, it turns out that the pressur
is never negligible. Extrapolating our results, we thus pred
that for the Burgers case there should be power-law tails b
for low and high densities. We have thus performed a sim
lation of the Burgers equation@coupled with Eq.~2! for the

FIG. 10. PDFs ofs for two simulations withM56 and g
50.5 ~top! andg51.5 ~bottom!. Note that at this Mach number, th
power-law regime for theg51.5 case appears removed from t
peak of the distribution, mediated by a regime with a steeper sl

FIG. 11. The theoretical PDF given by Eq.~19! for a50.28,

g51.5, M̃ (0)51.2, and values of the cutoffs atM̃510 for s,0

andM̃50.1 for s.0. Compare to Fig. 10.
r

at
e

e
f
at
ts

t
th
-

density# with the same parameters as for the previous r
and with N56144. The resulting PDF is presented in F
12. This plot shows that the PDF is indeed almost flat fos
,0, while there is also a power law fors.0, with a negative
slope of roughly20.5. The cutoff for large densities is du
to the viscous terms, which give a minimum scale for t
width of the shocks, and thus a maximum value for the d
sity peaks. In the physical domain, we observe the crea
of voids (s reaching a value of285 at t564) that occupy
most of the domain, together with very high peakss
'6.5). The number of peaks decreases during the simula
while the density in the voids decreases exponentially
time. The forcing is unable to break the peaks because it
at large scales, while the density fluctuations become as
row as allowed by viscosity. This PDF has to be contras
with the one obtained in@7#, for which the Reynolds numbe
was low and the simulation was decaying. In that case
power law at high densities was obtained but the PDF p
sents a sharp dropoff for low densities. Two-dimensional
caying simulations of the Burgers equation are also p
sented in@8# for moderate Reynolds numbers. The plateau
the PDF at low values of the density is also obtained. B
gers simulations for the decaying infinite Reynolds num
case are presented in@12#. In that case the PDF is calculate
for the cumulated mass function and not for the dens
which is not defined after the first shock formation. A pow
law is found that extends tos52` and connects to an ex
ponential decay fors→1`. Note that an exponential PDF
for the density was predicted in@13# on the basis of a mode
that treats shocks as completely inelastic particles. The c
of the forced Burgers equation has also been investiga
analytically using the instanton technique~ @14# and @15#!
and the operator product conjecture@16#. In these works,
special attention was devoted to the tails of the velocity d
ference PDF, for both positive@14# and negative@15# gradi-
ents. A numerical investigation aimed at testing these pre
tions would be of interest but deserves a separate stud
would also be interesting to use the instanton technique

e.

FIG. 12. PDF ofs for a Burgers run. Note the nearly flat slop
at negatives values.
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study the density PDF. To conclude this section, we emp
size that the Burgers case is truly a singular limit that can
be reached as the high Mach number limit of a polytro
gas, withgÞ0. This is true even for very small values ofg
as confirmed by a run withg50.001 andM510 from which
we obtain a density PDF similar to that of Fig. 10 forg
50.5.

IV. DISCUSSION

A. Effects of the forcing

The study presented in this paper has been performed
a single choice of the forcing and of the Reynolds numb
While the variation with the latter parameter can be trivia
extrapolated, we cannota priori be sure that our results ar
independent of the type of forcing. We have performed
cay runs and observed that the behavior ofss vs M̃ is still
the same as in the forced case. The PDFs, however, ca
be computed in a single snapshot due to poor statistics,
cannot be integrated in time since the Mach number chan
by roughly 1 or 2 orders of magnitude during the run. W
have also performed a run atg51 with a forcing of the form
f /r in Eq. ~1!. In that case the density PDF is not a lo
normal anymore but presents a power-law tail for low de
sities ~not shown!. This can be attributed to the fact that th
flow is stirred more vigorously at low densities so that t
effective Mach number indeed increases asr decreases. We
nevertheless think that our results can be extrapolated t
unforced situation at a given time and possibly also to
multidimensional case. Note that the Mach numbers we h
explored in this paper would correspond to even hig
Mach numbers in the multidimensional case since then o
a fraction of the total kinetic energy populates the compre
ible modes.

B. Summary

We have presented an investigation of the density PD
of a randomly accelerated polytropic gas for different valu
of the polytropic index and of the Mach number. We ha
suggested a simple model in which the density field is c
structed everywhere by a random succession of jumps@5#.
When the flow is isothermal (g51), the jumps are indepen
dent of the initial density, and always have the same pr
ability distribution. Expressed in the variables[ ln r, the
jumps are additive, and by the central limit theorem are
pected to have a Gaussian PDF, or a log-normal inr.

An analysis of the expecteds increments in the weak an
strong shock cases, as well as those due to expansion w
suggested that the variancess

2 should scale as the mea

square turbulent Mach numberM̃2. Moreover, because o
hy

b

a-
t

c

or
r.

-

not
nd
es

-

an
e
ve
r
ly
s-

s
s

-

-

-

es,

mass conservation, the peak of the distributionso is related
to the variance byso52 1

2 ss
2 . These predictions are verifie

in 1D simulations of compressible turbulence. Previo
claims that it is thedensityvariancesr

2 that should scale as

M̃2 @6# might have been misled by lower effective Mac
numbers than those achieved in the present simulations
which all of the kinetic energy is in compressible mod
thanks to the one dimensionality.

WhengÞ1, the density jumps are not independent of t
local density anymore, and the shape of the PDF sho
change. Observing that a renormalization of the Mach
rameter @Eq. ~1!# M→M (s;g)5Me[(12g)/2]s restores the
form of the equations for the caseg51, we proposed the
ansatz that the PDF may still be described by the same fu
tional form as in the caseg51, but replacingM with
M (s;g). This prediction is confirmed by the numeric
simulations, giving PDFs that are qualitatively in very go
agreement with the model PDF, Eq.~19!. The result is that
the PDF asymptotically approaches a power law on the s
where (g21)s,0, while it decays faster than log-normall
on the other side.

Upon the replacementsg→(22g) and r→1/r we find,
using the condition of mass conservation, that the slopea of
the power law for a given value ofg is related to its value a
22g by Eq. ~23! in the large Mach number limit. Thes
results are also confirmed by the numerical simulatio
which exhibit a power law ats.0 wheng,1 and ats,0
wheng.1, with slopes that are roughly related by Eq.~23!,
with better accuracy at large Mach numbers.

Finally, on the basis of these results, we suggested tha
Burgers case should develop a power-law PDF at both la
and small densities, since in this case there is no pressur
either side. This result was again confirmed by a simulat
of a Burgers flow.

We conclude this paper by pointing out that the non
niqueness of the infinite Mach number limit might have im
portant consequences for astrophysical applications, suc
in cosmology. The so-called Zeldovich@17# approximation is
indeed based on the Burgers equation, which, in light of
present work, appears as a questionable model of hig
compressible flows. This point will be addressed in futu
work.
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